Підручник з Астрономії (рівень стандарту). 11 клас. Пришляк

§ 14. Еволюція зір

Вивчивши цей параграф, ми:

• дізнаємося, як народжуються нові зорі;

• побачимо космічні катастрофи, коли вибухають старі зорі;

• довідаємося, чи перетвориться Сонце у чорну діру.

1. Зародження зір

Астрономи створили теорію еволюції зір завдяки тому, що в космосі можна спостерігати мільярди зір різного віку. Це трохи схоже на те, як за кілька годин можна описати ріст та розвиток дерева, яке існує десятки років,— треба тільки піти в ліс і вивчити дерева різного віку. Всесвіт — це своєрідний космічний парк, у якому зорі народжуються, певний час світять, а потім гинуть.

Важко побачити зорю до її народження, поки вона не почне світитися у видимій частині спектра. Зорі зароджуються разом із планетами з розріджених газопилових хмар, які утворюються після вибуху старих зір. За допомогою сучасних телескопів астрономи виявили в космосі сотні таких величезних газопилових туманностей, де зараз відбувається утворення молодих світів. Наприклад, такі своєрідні «ясла» новонароджених зір можна побачити в сузір’ї Оріон (рис. 14.1) та зоряному скупченні Плеяди (рис. 14.2).

Рис. 14.1. Туманність Оріона можна побачити навіть неозброєним оком. Відстань до неї близько 1000 св. років

Рис. 14.2. Туманність у зоряному скупченні Плеяди, з якої утворюються нові зорі

Доля зорі та тривалість її життя залежать від початкової маси зародка зорі — протозорі. Якщо вона була в кілька разів більша, ніж маса Сонця, то під час гравітаційного стиснення утворюються гарячі зорі спектральних класів О та Б. Протозорі з такою початковою масою, як маса Сонця, під час гравітаційного стиснення нагріваються до температури 6000 К. Протозорі з масою у кілька разів меншою, ніж сонячна, можуть перетворитися тільки на червоних карликів. Найменша маса, яка необхідна для початку термоядерних реакцій у надрах зорі, дорівнює майже 0,08 маси Сонця. Об’єкти меншої маси ніколи на зорі не перетворяться — вони будуть випромінювати енергію тільки в інфрачервоній частині спектра. Такі космічні тіла ми спостерігаємо навіть у Сонячній системі — це планети-гіганти Юпітер, Сатурн, Нептун (див. §9). Можливо, що в міжзоряному просторі кількість таких холодних інфрачервоних тіл (їх ще називають коричневими карликами) може бути набагато більшою, ніж видимих зір.

2. Зоря в стані гравітаційної рівноваги

Протягом свого тривалого життя кожна зоря може як збільшувати, так і зменшувати всі свої основні параметри — температуру, світність та радіус. Зорі на головній послідовності (рис. 13.6) перебувають у стані гравітаційної рівноваги, коли зовнішні шари за рахунок гравітації тиснуть до центра, у той час як тиск нагрітих газів діє в протилежному напрямку — від центра (рис. 14.3). Зоря в стані гравітаційної рівноваги не змінює своїх параметрів, бо інтенсивне випромінювання енергії з поверхні компенсується джерелом енергії в надрах — термоядерними реакціями. Такий процес триває доти, доки половина Гідрогену у ядрі не перетвориться на Гелій, і тоді інтенсивність термоядерних реакцій може зменшитися. Тривалість такої стаціонарної фази в житті зорі, коли її параметри довгий час залишаються сталими, залежить знову-таки від її маси. Розрахунки показують, що такі зорі, як Сонце, у стані рівноваги світять не менше ніж 10 млрд років. Більш масивні зорі спектральних класів О, В, у надрах яких термоядерні реакції протікають інтенсивніше, у рівновазі світять 100 млн років, а найдовше «мерехтять» маленькі червоні карлики — їхній вік може перевершувати 1011 років.

Рис. 14.3. Зоря в стані рівноваги: зовнішні сили гравітації врівноважені силами газового тиску

3. Змінні зорі

Змінні зорі протягом певного часу можуть змінювати свою яскравість. Розрізняють такі типи змінних зір:

• блиск зорі може змінюватися в кратних системах, коли відбуваються періодичні затемнення об’єктів, які мають різну світність. Прикладом такої змінної зорі є Алголь — відома подвійна зоря β Персея;

• інший тип змінних зір називають фізично змінними. Зміна яскравості таких зір пов’язана з тим, що термоядерні реакції в центрі зорі з часом будуть протікати не так інтенсивно, тоді порушення гравітаційної рівноваги буде помітне у зміні її розмірів і температури на поверхні — на діаграмі спектр—світність такі зорі не мають постійного положення і зміщуються з головної послідовності праворуч.

Рис. 14.4. Планетарна туманність утворюється, коли порушується рівновага і зоря скидає зовнішні шари

Із різних типів фізично змінних зір привертають увагу цефеїди. їхня назва походить від сузір’я, у якому вперше помітили таку змінну зорю — δ Цефея. Розрахунки періоду зміни яскравості показали, що цефеїди змінюють свій радіус, тому їх можна вважати своєрідними маятниками, які коливаються у своєму гравітаційному полі. Період пульсацій залежить від маси та радіуса зорі, наприклад δ Цефея пульсує з періодом 5,4 доби.

Пульсації приводять до того, що цефеїда з часом перетворюється на гіганта, який може поступово скинути свою оболонку. Такі об’єкти астрономи помилково назвали планетарними туманностями — колись вважали, що так народжується нова планетна система (рис. 14.4). Гаряче ядро такої планетарної туманності поступово стискується і перетворюється на білого карлика.

4. Нові та Наднові зорі

Зорі з масою у кілька разів більшою, ніж сонячна, закінчують своє життя грандіозним вибухом. У 1054 р. китайські астрономи спостерігали надзвичайно яскраву нову зорю, яку було видно вдень протягом кількох тижнів. Цю незвичайну зорю помітили також літописці в Київській Русі, бо це був рік смерті Ярослава Мудрого.

Вважалося, що поява нової зорі віщувала «Боже знамення» на сумну подію в житті Русі. Сьогодні на тому місці, де спалахнула ця таємнича зоря, видно туманність Краб (рис. 14.5). Зорі спектральних класів О та В, які протягом кількох днів збільшують свою яскравість у сотні мільйонів разів, називають Новими. Інколи Нова випромінює майже стільки ж енергії, скільки виділяють разом усі зорі в галактиці — такі зорі мають назву Наднових. Туманність Краб у сузір’ї Тільця є залишком такої Наднової, що спалахнула 4 липня 1054 р. Вірніше, якщо врахувати, що туманність Краб розміщується на відстані 6500 св. років від Землі, то спалах Наднової стався ще 7500 років тому.

Останній спалах Наднової астрономи спостерігали в минулому тисячолітті 24 лютого 1987 р. у сусідній галактиці — Великій Магеллановій Хмарі. Вибухнула гігантська зоря спектрального класу В, яка кілька тижнів світила яскравіше від усіх зір у галактиці (рис. 14.6). Приблизно за 20 год перед спалахом Наднової було зареєстровано ударну хвилю нейтринного потоку, який тривав 13 с і за потужністю був у десятки тисяч разів більший, ніж енергія в оптичному діапазоні. Таким чином, у 1987 р. астрономи вперше отримали інформацію про далеку космічну подію, яка відбулася майже 200000 років тому.

Рис. 14.5. Туманність Краб, яка утворилася після спалаху Наднової у 1054 р.

Нова зоря — вибухово змінна подвійна зоря, яка раптово збільшує свою світність в 100—10000000 разів (102—107 разів).

Наднова — зоря, світність якої збільшується за кілька днів у мільярди разів

Після спалаху зорі всі планети, які оберталися навколо неї, випаровуються і перетворюються у газопилову туманність, з якої в майбутньому може утворитися нове покоління зір. Тобто у Всесвіті спостерігається своєрідний кругообіг речовини: зорі — спалах зір — туманність — і знову народження молодих зір (рис. 14.7).

Рис. 14.6. Спалах Наднової у сусідній галактиці Велика Магелланова Хмара (1987 р.)

Рис. 14.7. Кругообіг речовини при утворенні та руйнуванні зір. Під час спалаху Нових утворюються важкі хімічні елементи, тому нове покоління планетних систем утворюється з іншим хімічним складом. Планети земного типу, які мають тверду поверхню, могли виникнути тільки на руїнах старої планетної системи, коли під час спалаху Нових утворюються Si, Fe, Al

Для допитливих

Після спалаху Нової чи Наднової залишається ядро, у якому відсутнє джерело енергії. Така зоря поступово зменшує свій радіус і світить тільки завдяки гравітаційному стисненню — потенціальна енергія зорі перетворюється на тепло. При стисненні маса залишається сталою, тому збільшується густина, і зоря перетворюється на білого карлика. Якщо початкова маса зорі була в кілька разів більшою, ніж сонячна, то білий карлик може перетворитись на нейтронну зорю, радіус якої не перевищує кількох десятків кілометрів, а густина сягає фантастичної величини 1015 г/см3. Першу нейтронну зорю випадково відкрили в Кембриджському університеті в 1967 р. За допомогою невеликої антени астрономи зареєстрували радіосигнал, який повторювався з постійним періодом 1 с. Уночі в тому напрямку, звідки надходили імпульси, не було видно жодної зорі, тому астрономи навіть висунули гіпотезу про радіосигнал штучного походження від позаземної цивілізації. Потім спостереження показали, що такі періодичні сигнали надходять на Землю від сотень інших невидимих джерел, які було названо пульсарами. Один із пульсарів було виявлено навіть у центрі знаменитої туманності Краб.

5. Пульсари і нейтронні зорі

Сучасні теоретичні розрахунки показують, що пульсари і нейтронні зорі — це одні й ті самі об’єкти. Внаслідок стиснення нейтронної зорі має виконуватися закон збереження моменту імпульсу. Цей закон часто демонструють на льоду фігуристи, коли треба викликати швидке обертання свого тіла навколо осі. Спортсмени спочатку починають повільно обертатися навколо осі з витягнутими в різні боки руками. Потім поступово руки підводять до тулуба, при цьому кутова швидкість обертання різко зростає. Таке саме зростання кутової швидкості спостерігається при зменшенні радіуса зорі. Наприклад, зараз Сонце обертається навколо своєї осі з періодом приблизно 28 діб. Якби радіус Сонця зменшився до 10 км, то його період обертання дорівнював би 1 с.

При гравітаційному стисненні настільки зростає напруженість магнітного поля зорі, що вона «випускає» випромінювання тільки через магнітні полюси у вигляді своєрідних «прожекторів», які описують у космосі величезний конус. Можливо, що в Галактиці існують мільйони нейтронних зір, але зареєстровано тільки кілька сотень у вигляді пульсарів (рис. 14.8), бо більшість таких «прожекторів» не спрямовані на Землю.

Рис. 14.8. Періодичні сигнали пульсарів пояснюються великою кутовою швидкістю обертання нейтронної зорі навколо осі

Пульсар — джерело електромагнітних хвиль, яке випромінює енергію у вигляді імпульсів із певним періодом. Те саме, ідо нейтронна зоря

6. Чорні діри

де R0 — граничне значення радіуса; G — гравітаційна стала; М — маса об’єкта; с = 300 000 км/с — швидкість світла.

Чорна діра не випускає з поля тяжіння ні елементарних частинок, ні електромагнітні хвилі. Радіус чорної діри залежить від її маси, і може бути від кількох сантиметрів або метрів до мільярдів кілометрів

Рис. 14.9. Чорна діра

Із формули (14.1) можна визначити критичний радіус будь-якого космічного тіла з відомою масою. Наприклад, для Землі R0 = 1 см, а для Сонця R0 = 3 км — такий об’єкт не буде випускати з гравітаційного поля навіть квантів світла, тому він стає невидимим, і від нього ми не можемо отримати інформацію за допомогою електромагнітних хвиль. Подібних чорних дір, або своєрідних зоряних могил, у космосі може налічуватися навіть більше, ніж звичайних зір. Отримати інформацію про чорну діру можна за допомогою і гравітаційного поля, яке безслідно не може зникнути.

Для допитливих

Уявіть собі, що космічний корабель наближується до чорної діри. Його швидкість має поступово зростати до швидкості світла. Але згідно з теорією відносності швидкість матеріального тіла, маса спокою якого відрізняється від нуля, ніколи не досягне швидкості світла. Тобто за земним годинником уявний космічний корабель ніколи не долетить до межі чорної діри, бо час для космонавтів на борту корабля буде сповільнюватися. Якщо космонавти будуть підтримувати зв'язок із Землею за допомогою радіо, то сповільнення часу проявиться у тому, що сигнали з корабля будуть надходити все рідше і рідше. З іншого боку, космонавти на космічному кораблі спостерігатимуть зовсім інший плин часу — сигнали від землян будуть надходити все частіше і частіше. Тобто космонавти на кораблі, який падає у чорну діру, могли б побачити далеке майбутнє нашого світу, але вони не зможуть передати нам інформацію про наше майбутнє, бо сигнал через межу чорної діри ніколи не досягне Землі...

7. Еволюція Сонця

Теоретичні розрахунки показують, що такі зорі, як Сонце, ніколи не стануть чорними дірами, бо вони мають недостатню масу для гравітаційного стиснення до критичного радіуса. У стані гравітаційної рівноваги Сонце може світити 1010 років, але ми не можемо точно визначити його вік, тобто скільки часу пройшло від його утворення. Правда, за допомогою радіоактивного розпаду важких хімічних елементів можна визначити приблизний вік Землі — 4,5 млрд років (рис. 14.10), але Сонце могло утворитися раніше, ніж сформувалися планети. Якщо все таки зорі й планети формуються одночасно, то Сонце може світити в майбутньому ще 5 млрд років. Після того як у ядрі весь Гідроген перетвориться на Гелій (див. §12), порушиться рівновага в надрах Сонця, і воно може перетворитись на змінну пульсуючу зорю — цефеїду.

Рис. 14.10. Сонячна система утворилася 5 млрд років тому з величезної газопилової хмари

Потім через нестабільність радіус Сонця почне збільшуватись, а температура фотосфери знизиться до 4000 К — Сонце перетвориться на червоного гіганта. На небосхилі Землі буде світити велетенська червона куля, кутовий діаметр якої збільшиться в 10 разів у порівнянні із сучасним Сонцем і буде сягати 5°. Блакитного неба на Землі не стане, бо світність майбутнього Сонця зросте в десятки разів, а температура на поверхні нашої планети буде більшою ніж 1000 К. Википлять океани, і Земля перетвориться на страшну гарячу пустелю, чимось схожу на сучасну Венеру. У Сонячній системі така температура, яка зараз на Землі, буде тільки на околицях — на супутниках Сатурна та Урана. У стадії червоного гіганта Сонце буде світити приблизно 100 млн років, після чого верхня оболонка відірветься від ядра й почне розширюватись у міжзоряний простір у вигляді планетарної туманності (рис. 14.11). При розширенні напевно випаруються всі планети земної групи, і на місці Сонця залишиться білий карлик — маленьке гаряче ядро, у якому колись протікали термоядерні реакції. Радіус білого карлика буде не більшим, ніж у Землі, але густина сягатиме 1010 кг/м3. Білий карлик не має джерел енергії, тому температура його поверхні поступово знизиться, і остання стадія еволюції нашого Сонця — холодний чорний карлик.

Для допитливих

Сонячна система утворилася 5 млрд років тому з велетенської хмари газу і пилу. А раніше замість цієї хмари існувала зоря, яка вибухнула як Наднова. Тобто наше Сонце належить уже до другого (а можливо й третього) покоління зір, що мають багато важких хімічних елементів, з яких утворилися планети земної групи.

Рис. 14.11. Еволюція Сонця в майбутньому. Сонце може світити ще 5 млрд років. Потім воно перетвориться на червоного гіганта, який спалить усі живі істоти на Землі

Висновки

У космосі постійно відбуваються народження молодих зір із газопилових туманностей та вибухи старих, коли утворюються нові туманності. Сонячна система утворилася близько 5 мрд років тому з велетенської газопилової хмари, яка виникла на місці вибуху старої зорі. У стані рівноваги Сонце буде світити ще кілька мільярдів років, а потім перетвориться на червоного гіганта, який знищить усе живе на Землі...

Тести

1. Які із цих зір світять довше за всіх?

А. Гіганти спектрального класу О. Б. Білі зорі спектрального класу А. В. Сонце. Г. Червоні гіганти спектрального класу М. Д. Червоні карлики спектрального класу М.

2. Зорі якого спектрального класу мають найкоротше життя?

А. А.

Б. В.

В. F.

Г. G.

Д. К.

Е. М.

3. Який космічний об'єкт називають пульсаром?

А. Червоний гігант. Б. Нейтронну зорю. В. Білий карлик. Г. Пульсуючу зорю. Д. Червоний карлик.

4. Термін «нова зоря» означає:

А. У космосі утворилася молода зоря. Б. Вибухнула стара зоря. В. Періодично збільшується яскравість зорі. Г. Відбуваються зіткнення зір. Д. Космічні катастрофи з невідомим джерелом енергії.

5. У майбутньому Сонце може перетворитись:

А. На чорну діру. Б. На нейтронну зорю. В. На пульсар. Г. На червоного гіганта. Д. На червоного карлика. Е. На білого карлика.

6. Коли параметри зорі залишаються сталими?

7. Які зорі світять найдовше?

8. Скільки часу може світити Сонце у стані рівноваги?

9. Як гинуть зорі великої маси?

10. Чи може зоря червоний карлик перетворитись на білого карлика?

11. Чому пульсари періодично змінюють інтенсивність випромінювання?

12. Визначте густину зорі білого карлика, який має діаметр 1000 км, а його маса дорівнює 1030 кг.

13. Визначте густину зорі Бетельгейзе, якщо ії радіус у 400 разів більший від радіуса Сонця, а маса приблизно дорівнює масі Сонця.

Диспути на запропоновані теми

14. Як на вашу думку, чи зможе вижити в Сонячній системі наша цивілізація, якщо Сонце в майбутньому перетвориться на червоного гіганта?

Завдання для спостережень

15. Відшукайте на небі Велику туманність у сузір'ї Оріон і визначте, о котрій годині вона сходить, заходить і кульмінує.

16. Відшукайте на небі яскраві зорі, які видно у вечірній час, і порівняйте їх із Сонцем.

Ключові поняття і терміни:

Змінна зоря, коричневий карлик, круговорот речовини, наднова зоря, нейтронна зоря, нова зоря, протозоря, планетарна туманність, пульсар, цефеїда, чорна діра.