Учебник по Астрономии (уровень стандарта). 11 класс. Пришляк

§ 5. Основы космонавтики

Изучив этот параграф, мы:

• вспомним ученых, внесших значительный вклад в освоение космоса;

• узнаем, как можно изменять орбиту космических кораблей;

• убедимся, что космонавтика широко используется на Земле.

1. Зарождение космонавтики

Космонавтика изучает движение искусственных спутников Земли (ИСЗ), космических кораблей и межпланетных станций в космическом пространстве. Существует различие между природными телами и искусственными космическими аппаратами: последние при помощи реактивных двигателей могут изменять параметры своей орбиты.

Значительный вклад в создание научных основ космонавтики, пилотируемых космических кораблей и автоматических межпланетных станций (АМС) внесли украинские ученые.

К. Э. Циолковский (рис. 5.1) создал теорию реактивного движения. В 1902 г. он впервые доказал, что только при помощи реактивного двигателя можно достичь первой космической скорости.

Рис. 5.1. К. Э. Циолковский (1857—1935)

Украинский ученый Ю. В. Кондратюк (А. Г. Шаргей; рис. 5.2) в 1918 г. рассчитал траекторию полета на Луну, которая впоследствии была применена в США при подготовке космических экспедиций «Аполлон».

Рис. 5.2. Ю. В. Кондратюк (1898—1942)

Выдающийся конструктор первых в мире космических кораблей и межпланетных станций С. П. Королев (1906—1966) родился и учился в Украине. Под его руководством 4 октября 1957 г. в Советском Союзе был запущен первый в мире ИСЗ, созданы АМС, которые первыми в истории космонавтики достигли Луны, Венеры и Марса. Наибольшим достижением космонавтики в то время был первый пилотируемый полет космического корабля «Восток», на котором 12 апреля 1961 г. летчик-космонавт Ю. А. Гагарин совершил кругосветное космическое путешествие.

2. Круговая скорость

Рассмотрим орбиту спутника, который обращается по круговой орбите на высоте Н над поверхностью Земли (рис. 5.3). Для того чтобы орбита была постоянной и не изменяла свои параметры, должны выполняться два условия.

Рис. 5.3. Круговая скорость определяет движение тела вокруг Земли на постоянной высоте Н над ее поверхностью

1. Вектор скорости должен быть направлен по касательной к орбите.

2. Величина линейной скорости спутника должна равняться круговой скорости, которая определяется уравнением:

Из формулы (5.1) следует, что самое большое значение круговая скорость имеет при высоте Н = 0, то есть в том случае, когда спутник движется у самой поверхности Земли. Такая скорость в космонавтике называется первой космической:

В реальных условиях ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью, ибо плотная атмосфера очень тормозит движение тел, которые перемещаются с большой скоростью. Если бы даже скорость ракеты в атмосфере достигла величины первой космической, то большое сопротивление воздуха разогрело бы ее поверхность до температуры плавления. Поэтому ракеты во время старта с поверхности Земли сначала поднимаются вертикально вверх до высоты нескольких сотен километров, где сопротивление воздуха незначительно, и только тогда спутнику сообщается соответствующая скорость в горизонтальном направлении.

Первая космическая скорость V1 — 7,9 км/с — скорость, которую надо придать телу, чтобы оно обращалось вокруг Земли по круговой орбите, радиус которой равен радиусу Земли

Для любознательных

Невесомость во время полета в космическом корабле наступает в момент, когда прекращают работу ракетные двигатели. Для того чтобы ощутить состояние невесомости, не обязательно лететь в космос. Любой прыжок в высоту, или длину, когда исчезает опора под ногами, дает нам кратковременное ощущение состояния невесомости.

3. Движение космических аппаратов по эллиптическим орбитам

Если величина скорости спутника будет отличаться от круговой или вектор скорости не будет параллелен плоскости горизонта, тогда космический аппарат (КА) будет обращаться вокруг Земли по эллиптической траектории. Согласно первому закону Кеплера, в одном из фокусов эллипса должен находиться центр Земли, поэтому плоскость орбиты спутника должна пересекать плоскость экватора или совпадать с ней (рис. 5.4). В этом случае высота спутника над поверхностью Земли изменяется в пределах от перигея до апогея. Эти названия аналогичны соответствующим точкам на орбитах планет — перигелия и афелия (см. § 4).

Рис. 5.4. Движение спутника по эллиптической траектории похоже на обращение планет в зоне тяготения Солнца. Изменение скорости определяется законом сохранения энергии: сумма кинетической и потенциальной энергии тела при движении по орбите остается постоянной

Если спутник движется по эллиптической траектории, то, согласно второму закону Кеплера, изменяется его скорость: наибольшую скорость спутник имеет в перигее, а наименьшую — в апогее.

Перигей

Точка орбиты КА, которая находится ближе всего к Земле

Апогей

Точка орбиты КА, которая находится дальше всего от Земли

4. Период обращения космического аппарата

Если космический аппарат движется по эллипсу вокруг Земли с переменной скоростью, его период обращения можно определить с помощью третьего закона Кеплера (см. § 4):

где Тс — период обращения спутника вокруг Земли; Тм = 27,3 суток — сидерический период обращения Луны вокруг Земли; ас — большая полуось орбиты спутника; ам = 380000 км большая полуось орбиты Луны. Из уравнения (5.3) определим:

Рис. 5.5. Геостационарный спутник обращается на высоте 35600 км только по круговой орбите в плоскости экватора с периодом 24 ч (N — Северный полюс)

В космонавтике особую роль играют ИСЗ, которые «висят» над одной точкой Земли — это геостационарные спутники, использующиеся для космической связи (рис. 5.3).

Для любознательных

Для обеспечения глобальной связи достаточно вывести на геостационарную орбиту три спутника, которые должны «висеть» в вершинах правильного треугольника. Сейчас на таких орбитах находятся уже несколько десятков коммерческих спутников разных стран, обеспечивая ретрансляцию телевизионных программ, мобильную телефонную связь, компьютерную сеть Интернет. Спутники связи выводят на геостационарные орбиты также украинские ракеты «Зенит» и «Днепр».

5. Вторая и третья космические скорости

Эти скорости определяют условия соответственно для межпланетных и межзвездных перелетов. Если сравнить вторую космическую скорость V2 с первой V1 (5.2), то получим соотношение:

Космический корабль, стартующий с поверхности Земли со второй космической скоростью и движущийся по параболической траектории, мог бы полететь к звездам, потому что парабола является незамкнутой кривой и уходит в бесконечность. Но в реальных условиях такой корабль не покинет Солнечную систему, ибо любое тело, которое вышло за пределы земного тяготения, попадает в гравитационное поле Солнца. То есть космический корабль станет спутником Солнца и будет обращаться в Солнечной системе подобно планетам или астероидам.

Для полета за пределы Солнечной системы космическому кораблю нужно сообщить третью космическую скорость V3 = 16,7 км/с. К сожалению, мощность современных реактивных двигателей еще недостаточна для полета к звездам при старте непосредственно с поверхности Земли. Но если КА пролетает через гравитационное поле другой планеты, он может получить дополнительную энергию, которая позволяет в наше время совершать межзвездные полеты. В США уже запустили несколько таких АМС («Пионер-10,11» и «Вояджер-1,2»), которые в гравитационном поле планет-гигантов увеличили свою скорость настолько, что в будущем вылетят за пределы Солнечной системы.

Третья космическая скорость — минимальная скорость, когда ракета во время старта с поверхности Земли может покинуть сферу притяжения Солнца и улететь в галактическое пространство

Для любознательных

Полет на Луну происходит в гравитационном поле Земли, поэтому КА летит по эллипсу, в фокусе которого находится центр Земли. Самая выгодная траектория полета с минимальным расходом топлива — это эллипс, являющийся касательным к орбите Луны.

Во время межпланетных полетов, например на Марс, КА летит по эллипсу, в фокусе которого находится Солнце. Самая выгодная траектория с наименьшей затратой энергии проходит по эллипсу, который является касательным к орбите Земли и Марса. Точки старта и прилета лежат на одной прямой по разные стороны от Солнца. Такой полет в одну сторону длится более 8 месяцев. Космонавтам, которые в недалеком будущем посетят Марс, надо учесть, что сразу же вернуться на Землю они не смогут: Земля по орбите движется быстрее, чем Марс, и через 8 месяцев его опередит. До возвращения космонавтам нужно находиться на Марсе еще 8 месяцев, пока Земля займет выгодное положение. То есть общая продолжительность экспедиции на Марс будет не менее двух лет.

6. Практическое применение космонавтики

В наше время космонавтика служит не только для изучения Вселенной, но и приносит большую практическую пользу людям на Земле. Искусственные космические аппараты изучают погоду, исследуют космос, помогают решать экологические проблемы, ведут поиски полезных ископаемых, обеспечивают радионавигацию (рис. 5.6, 5.7). Но наибольшие заслуги космонавтики в развитии космических средств связи, космического мобильного телефона, телевидения и Интернета.

Рис. 5.6. Международная космическая станция

Рис. 5.7. Космическая станция в виде гигантского кольца, идею которой предложил Циолковский. Вращение станции вокруг оси создаст искусственное притяжение

Украина принимает активное участие в международных космических программах. Ученые проектируют строительство космических солнечных электростанций, которые будут передавать энергию на Землю. В недалеком будущем кто-нибудь из нынешних учеников полетит на Марс, будет осваивать Луну и астероиды. Нас ждут загадочные чужие миры и встреча с другими формами жизни, а возможно, и с внеземными цивилизациями.

Рис. 5.8. Старт украинской ракеты «Зенит» с космодрома в Тихом океане

Выводы

Космонавтика как наука о полетах в межпланетное пространство бурно развивается и занимает особое место в методах изучения небесных тел и космической среды. Кроме того в наше время космонавтика успешно применяется в средствах связи (телефон, радио, телевидение, Интернет), в навигации, геологии, метеорологии и многих других областях деятельности человека.

Тесты

1. С первой космической скоростью может лететь космический корабль, обращающийся вокруг Земли по круговой орбите на такой высоте над поверхностью:

А. 0 км. Б. 100 км. В. 200 км. Г. 1000 км. Д. 10000 км.

2. Ракета стартует с поверхности Земли со второй космической скоростью. Куда она долетит?

А. До Луны. Б. До Солнца. В. Станет спутником Солнца. Г. Станет спутником Марса. Д. Полетит к звездам.

3. Космический корабль обращается вокруг Земли по эллиптической орбите. Как называется точка орбиты, в которой космонавты находятся ближе всего к Земле?

А. Перигей. Б. Перигелий. В. Апогей. Г. Афелий. Д. Парсек.

4. Ракета с космическим кораблем стартует с космодрома. Когда космонавты почувствуют невесомость?

А. На высоте 100 м. Б. На высоте 100 км. В. Когда выключится реактивный двигатель. Г. Когда ракета попадет в безвоздушное пространство.

5. Какие из этих физических законов не выполняются в невесомости?

А. Закон Гука. Б. Закон Кулона. В. Закон всемирного тяготения. Г. Закон Бойля-Мариотта. Д. Закон Архимеда.

6. Почему ни один спутник не может обращаться вокруг Земли по круговой орбите с первой космической скоростью?

7. Чем отличается перигей от перигелия?

8. Почему при запуске космического корабля возникают перегрузки?

9. Выполняется ли в невесомости закон Архимеда?

10. Космический корабль обращается вокруг Земли по круговой орбите на высоте 200 км. Определите линейную скорость корабля.

11. Может ли космический корабль сделать за сутки 24 оборота вокруг Земли?

Диспуты на предложенные темы

12. Что вы можете предложить для будущих космических программ, в которых могли бы принимать участие украинские ученые?

Задания для наблюдений

13. Вечером найдите на небе спутник или международную космическую станцию, которые освещаются Солнцем и с поверхности Земли выглядят, как яркие точки. Нарисуйте их путь среди созвездий в течение 10 минут. Чем отличается полет спутника от движения планет?

Ключевые понятия и термины:

Апогей, геостационарный спутник, вторая космическая скорость, круговая скорость, межпланетная космическая станция, перигей, первая космическая скорость, искусственный спутник Земли.