Ваша електронна бібліотека

По історії України та всесвітній історії

100 ВЕЛИКИХ УЧЕНЫХ

ДЖОЗЕФ ТОМСОН

(1856—1940)

Английский физик Джозеф Томсон вошел в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».

Джозеф Джон Томсон родился 8 декабря 1856 года в Манчестере. Здесь, в Манчестере, он окончил Оуэне-колледж, а в 1876—1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории.

Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась «Об электрических и магнитных эффектах, производимых движением наэлектризованных тел». В этой статье выражена та мысль, что «эфир вне заряженного тела является носителем всей массы, импульса и энергии». С увеличением скорости изменяется характер поля, в силу чего вся эта «полевая» масса возрастает, оставаясь, все время пропорциональной энергии.

Томсон был, одержим экспериментальной физикой в лучшем смысле этого слова. Неутомимый в работе, он настолько привык самостоятельно добиваться поставленной цели, что злые языки поговаривали о его полном пренебрежении к авторитетам. Уверяли, что он предпочитал самостоятельно продумывать любые незнакомые ему вопросы научного характера, вместо того чтобы обратиться к книгам и готовым теориям. Впрочем, это явное преувеличение...

Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона. Для самого Джозефа его назначение было неожиданностью.

Известно, что, когда один из американских физиков, стажировавшихся в Кавендишской лаборатории, узнал об этом назначении, он тут же собрал свои пожитки. «Бессмысленно работать под началом профессора, который всего на два года старше тебя...» — заявил он, отплывая на родину. Что ж, у него впереди было много времени, чтобы пожалеть о своей поспешности.

Для такого выбора у старого директора лаборатории были немалые основания. Все, кто близко знал Томсона, единодушно отмечали его неизменную благожелательность и приятную манеру общения, сочетавшуюся с принципиальностью. Позже ученики вспоминали, что их руководитель любил повторять слова Максвелла о том, что никогда не следует отговаривать человека поставить задуманный им эксперимент. Даже если он не найдет того, что ищет, он может открыть нечто иное и вынести для себя больше пользы, чем из тысячи дискуссий.

Так уживались в этом человеке столь разные свойства, как самостоятельность собственных суждений и глубокое уважение к мнению ученика, сотрудника или коллеги. И может быть, именно эти качества обеспечили ему успех в должности руководителя «Кавендиша».

На новый пост Томсон пришел, имея опубликованные работы, убеждение в единстве материального мира и множество планов на будущее. И его первые успехи способствовали авторитету Кавендишской лаборатории.

Скоро здесь собралась группа молодых людей, приехавших из самых разных стран. Все они одинаково горели энтузиазмом и готовы были на любые жертвы ради науки. Образовалась школа, настоящий научный коллектив людей, объединенных общностью целей и методов, с мировым авторитетом во главе.

С 1884 по 1919 год, когда его сменил на посту директора лаборатории Резерфорд, Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские ученые.

Завершая в конце жизни книгу своих воспоминаний, Томсон перечисляет среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в тринадцати странах. Результат поистине блестящий.

Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей...

Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо. В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной, то есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат. Он мог, безусловно, положить конец всем спорам о природе катодных лучей, но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам. Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.

Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом? Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд.

Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов...

При одной мысли об этом исследователю прошлого века должно было становиться не по себе. Ведь само слово «атом» означало «неделимый».

Тысячелетиями, прошедшими со времени Демокрита, атомы являлись символами предела делимости, символами дискретности вещества. И вдруг... Вдруг оказывается, что и у них есть составные части? Согласитесь, что тут было от чего почувствовать растерянность. Правда к ужасу святотатства примешивался в немалой степени и восторг от предвкушения великого открытия...

Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют.

Тонкий почерк ученого покрывает листы бумаги бесконечными цифрами. И вот они, первые результаты расчетов: сомнений нет, неизвестные частицы — не что иное, как мельчайшие электрические заряды, неделимые атомы электричества, или электроны. Они были известны теоретически и даже получили название, но только ему удалось открыть и тем самым окончательно подтвердить их существование экспериментально.

И это сделал он — упрямый английский физик-экспериментатор профессор Джозеф Джон Томсон, которого ученики и коллеги за глаза звали просто Джи-Джи.

29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, назначен его доклад. Большинство собравшихся хорошо знакомы с историей вопроса.

Многие сами пытались решить проблемы природы катодных лучей. Имя докладчика обещало интересное сообщение.

И вот Томсон на трибуне. Он высокого роста, худощавый, в очках с металлической оправой. Говорит уверенно, громко. Ассистенты докладчика тут же, на глазах у присутствующих, готовят демонстрационный опыт.

Действительно, все, о чем говорил высокий джентльмен в очках, имело место. Катодные лучи в трубке послушно отклонялись и притягивались магнитным и электрическим полями. Причем отклонялись и притягивались именно так, как должны были, если предположить, что они состояли из мельчайших отрицательно заряженных частиц...

Слушатели были в восторге. Они не раз прерывали доклад аплодисментами. Финал же превзошел все ожидания. Такого триумфа этот старинный зал, пожалуй, еще не видел. Почтенные члены Королевского общества вскакивали с мест, спешили к демонстрационному столу, толпились, размахивая руками, и кричали...

Восторг присутствующих объяснялся вовсе не тем, что коллега Дж.Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми частицами без всякого внутреннего строения. Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул — электронов.

Название «электрон», некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда, стало именем неделимого «атома электричества». Теперь стали видны и дальнейшие самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона, что позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций... Да что говорить, знание точного значения заряда электрона было необходимо как воздух, и потому за опыты по его определению тут же взялись многие физики.

В 1904 году Томсон обнародовал свою новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Ученому не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы. В каждом кольце корпускулы совершали довольно сложные движения, которые автор гипотезы связывал со спектрами. А распределение корпускул по кольцам оболочкам соответствовало вертикальным столбцам таблицы Менделеева. Рассказывают, что однажды журналисты попросили Джи-Джи пояснить наглядно, каким он предполагает строение «своего атома». 1-0, это очень просто, — невозмутимо ответил профессор, — скорее всего это нечто вроде пудинга с изюмом...

Так и вошел в историю науки атом Томсона — положительно заряженным «пудингом», нафаршированным отрицательными «изюминками» — электронами.

Томсон и сам прекрасно понимал сложность структуры «пудинга с изюмом». Ученый подошел совсем близко и к выводу, что характер распределения электронов в атоме определяет его место в периодической системе элементов, но только подошел. Окончательный вывод был еще впереди. Многое в предложенной им модели было еще необъяснимо. Никто, например, не понимал, что представляет собой положительно заряженная масса атома и сколько электронов должно содержаться в атомах различных элементов.

Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц.

В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.

Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография «Лучи положительного электричества» положила начало масс-спектроскопии. Развивая методику Томсона, его ученик Астон построил первый масс-спектрометр и разработал метод анализа и разделения изотопов. В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привел к его ставшим классическими измерениям заряда электрона.

В лаборатории Кавендиша начала свою жизнь и знаменитая камера Вильсона, построенная учеником и сотрудником Томсона Вильсоном в 1911 году.

Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики очень велика. Но Томсон до конца своей жизни оставался сторонником эфира, разрабатывал модели движения в эфире, результатом которых, по его мнению, были наблюдаемые явления.

Так, отклонение катодного пучка в магнитном поле он интерпретировал как прецессию гироскопа, наделяя совокупность электрического и магнитного полей вращательным моментом.

Умер Томсон 30 августа 1940 года, в трудное для Англии время, когда над ней нависла угроза вторжения гитлеровцев.





100 ВЕЛИКИХ УЧЕНЫХ